\(\int \frac {x^3 (a+b \text {arccosh}(c x))}{(d+e x^2)^3} \, dx\) [507]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 231 \[ \int \frac {x^3 (a+b \text {arccosh}(c x))}{\left (d+e x^2\right )^3} \, dx=-\frac {b c x \left (1-c^2 x^2\right )}{8 e \left (c^2 d+e\right ) \sqrt {-1+c x} \sqrt {1+c x} \left (d+e x^2\right )}+\frac {x^4 (a+b \text {arccosh}(c x))}{4 d \left (d+e x^2\right )^2}-\frac {b \sqrt {1-c^2 x^2} \arcsin (c x)}{4 d e^2 \sqrt {-1+c x} \sqrt {1+c x}}+\frac {b c \left (2 c^2 d+3 e\right ) \sqrt {1-c^2 x^2} \arctan \left (\frac {\sqrt {c^2 d+e} x}{\sqrt {d} \sqrt {1-c^2 x^2}}\right )}{8 \sqrt {d} e^2 \left (c^2 d+e\right )^{3/2} \sqrt {-1+c x} \sqrt {1+c x}} \]

[Out]

1/4*x^4*(a+b*arccosh(c*x))/d/(e*x^2+d)^2-1/8*b*c*x*(-c^2*x^2+1)/e/(c^2*d+e)/(e*x^2+d)/(c*x-1)^(1/2)/(c*x+1)^(1
/2)-1/4*b*arcsin(c*x)*(-c^2*x^2+1)^(1/2)/d/e^2/(c*x-1)^(1/2)/(c*x+1)^(1/2)+1/8*b*c*(2*c^2*d+3*e)*arctan(x*(c^2
*d+e)^(1/2)/d^(1/2)/(-c^2*x^2+1)^(1/2))*(-c^2*x^2+1)^(1/2)/e^2/(c^2*d+e)^(3/2)/d^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(
1/2)

Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 241, normalized size of antiderivative = 1.04, number of steps used = 9, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.476, Rules used = {270, 5958, 12, 533, 481, 537, 223, 212, 385, 214} \[ \int \frac {x^3 (a+b \text {arccosh}(c x))}{\left (d+e x^2\right )^3} \, dx=\frac {x^4 (a+b \text {arccosh}(c x))}{4 d \left (d+e x^2\right )^2}-\frac {b \sqrt {c^2 x^2-1} \text {arctanh}\left (\frac {c x}{\sqrt {c^2 x^2-1}}\right )}{4 d e^2 \sqrt {c x-1} \sqrt {c x+1}}+\frac {b c \sqrt {c^2 x^2-1} \left (2 c^2 d+3 e\right ) \text {arctanh}\left (\frac {x \sqrt {c^2 d+e}}{\sqrt {d} \sqrt {c^2 x^2-1}}\right )}{8 \sqrt {d} e^2 \sqrt {c x-1} \sqrt {c x+1} \left (c^2 d+e\right )^{3/2}}-\frac {b c x \left (1-c^2 x^2\right )}{8 e \sqrt {c x-1} \sqrt {c x+1} \left (c^2 d+e\right ) \left (d+e x^2\right )} \]

[In]

Int[(x^3*(a + b*ArcCosh[c*x]))/(d + e*x^2)^3,x]

[Out]

-1/8*(b*c*x*(1 - c^2*x^2))/(e*(c^2*d + e)*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(d + e*x^2)) + (x^4*(a + b*ArcCosh[c*x]
))/(4*d*(d + e*x^2)^2) - (b*Sqrt[-1 + c^2*x^2]*ArcTanh[(c*x)/Sqrt[-1 + c^2*x^2]])/(4*d*e^2*Sqrt[-1 + c*x]*Sqrt
[1 + c*x]) + (b*c*(2*c^2*d + 3*e)*Sqrt[-1 + c^2*x^2]*ArcTanh[(Sqrt[c^2*d + e]*x)/(Sqrt[d]*Sqrt[-1 + c^2*x^2])]
)/(8*Sqrt[d]*e^2*(c^2*d + e)^(3/2)*Sqrt[-1 + c*x]*Sqrt[1 + c*x])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 270

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*
c*(m + 1))), x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[(m + 1)/n + p + 1, 0] && NeQ[m, -1]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 481

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-a)*e^(
2*n - 1)*(e*x)^(m - 2*n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(b*n*(b*c - a*d)*(p + 1))), x] + Dist[e^
(2*n)/(b*n*(b*c - a*d)*(p + 1)), Int[(e*x)^(m - 2*n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[a*c*(m - 2*n + 1)
+ (a*d*(m - n + n*q + 1) + b*c*n*(p + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0]
 && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m - n + 1, n] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 533

Int[(u_.)*((c_) + (d_.)*(x_)^(n_.))^(q_.)*((a1_) + (b1_.)*(x_)^(non2_.))^(p_)*((a2_) + (b2_.)*(x_)^(non2_.))^(
p_), x_Symbol] :> Dist[(a1 + b1*x^(n/2))^FracPart[p]*((a2 + b2*x^(n/2))^FracPart[p]/(a1*a2 + b1*b2*x^n)^FracPa
rt[p]), Int[u*(a1*a2 + b1*b2*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a1, b1, a2, b2, c, d, n, p, q}, x] && EqQ[
non2, n/2] && EqQ[a2*b1 + a1*b2, 0] &&  !(EqQ[n, 2] && IGtQ[q, 0])

Rule 537

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rule 5958

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u =
 IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Dist[a + b*ArcCosh[c*x], u, x] - Dist[b*c, Int[SimplifyIntegrand[u/(Sqrt[
1 + c*x]*Sqrt[-1 + c*x]), x], x], x]] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[c^2*d + e, 0] && IntegerQ[p] &
& (GtQ[p, 0] || (IGtQ[(m - 1)/2, 0] && LeQ[m + p, 0]))

Rubi steps \begin{align*} \text {integral}& = \frac {x^4 (a+b \text {arccosh}(c x))}{4 d \left (d+e x^2\right )^2}-(b c) \int \frac {x^4}{4 d \sqrt {-1+c x} \sqrt {1+c x} \left (d+e x^2\right )^2} \, dx \\ & = \frac {x^4 (a+b \text {arccosh}(c x))}{4 d \left (d+e x^2\right )^2}-\frac {(b c) \int \frac {x^4}{\sqrt {-1+c x} \sqrt {1+c x} \left (d+e x^2\right )^2} \, dx}{4 d} \\ & = \frac {x^4 (a+b \text {arccosh}(c x))}{4 d \left (d+e x^2\right )^2}-\frac {\left (b c \sqrt {-1+c^2 x^2}\right ) \int \frac {x^4}{\sqrt {-1+c^2 x^2} \left (d+e x^2\right )^2} \, dx}{4 d \sqrt {-1+c x} \sqrt {1+c x}} \\ & = -\frac {b c x \left (1-c^2 x^2\right )}{8 e \left (c^2 d+e\right ) \sqrt {-1+c x} \sqrt {1+c x} \left (d+e x^2\right )}+\frac {x^4 (a+b \text {arccosh}(c x))}{4 d \left (d+e x^2\right )^2}-\frac {\left (b c \sqrt {-1+c^2 x^2}\right ) \int \frac {-d+2 \left (c^2 d+e\right ) x^2}{\sqrt {-1+c^2 x^2} \left (d+e x^2\right )} \, dx}{8 d e \left (c^2 d+e\right ) \sqrt {-1+c x} \sqrt {1+c x}} \\ & = -\frac {b c x \left (1-c^2 x^2\right )}{8 e \left (c^2 d+e\right ) \sqrt {-1+c x} \sqrt {1+c x} \left (d+e x^2\right )}+\frac {x^4 (a+b \text {arccosh}(c x))}{4 d \left (d+e x^2\right )^2}-\frac {\left (b c \sqrt {-1+c^2 x^2}\right ) \int \frac {1}{\sqrt {-1+c^2 x^2}} \, dx}{4 d e^2 \sqrt {-1+c x} \sqrt {1+c x}}+\frac {\left (b c \left (2 c^2 d+3 e\right ) \sqrt {-1+c^2 x^2}\right ) \int \frac {1}{\sqrt {-1+c^2 x^2} \left (d+e x^2\right )} \, dx}{8 e^2 \left (c^2 d+e\right ) \sqrt {-1+c x} \sqrt {1+c x}} \\ & = -\frac {b c x \left (1-c^2 x^2\right )}{8 e \left (c^2 d+e\right ) \sqrt {-1+c x} \sqrt {1+c x} \left (d+e x^2\right )}+\frac {x^4 (a+b \text {arccosh}(c x))}{4 d \left (d+e x^2\right )^2}-\frac {\left (b c \sqrt {-1+c^2 x^2}\right ) \text {Subst}\left (\int \frac {1}{1-c^2 x^2} \, dx,x,\frac {x}{\sqrt {-1+c^2 x^2}}\right )}{4 d e^2 \sqrt {-1+c x} \sqrt {1+c x}}+\frac {\left (b c \left (2 c^2 d+3 e\right ) \sqrt {-1+c^2 x^2}\right ) \text {Subst}\left (\int \frac {1}{d-\left (c^2 d+e\right ) x^2} \, dx,x,\frac {x}{\sqrt {-1+c^2 x^2}}\right )}{8 e^2 \left (c^2 d+e\right ) \sqrt {-1+c x} \sqrt {1+c x}} \\ & = -\frac {b c x \left (1-c^2 x^2\right )}{8 e \left (c^2 d+e\right ) \sqrt {-1+c x} \sqrt {1+c x} \left (d+e x^2\right )}+\frac {x^4 (a+b \text {arccosh}(c x))}{4 d \left (d+e x^2\right )^2}-\frac {b \sqrt {-1+c^2 x^2} \text {arctanh}\left (\frac {c x}{\sqrt {-1+c^2 x^2}}\right )}{4 d e^2 \sqrt {-1+c x} \sqrt {1+c x}}+\frac {b c \left (2 c^2 d+3 e\right ) \sqrt {-1+c^2 x^2} \text {arctanh}\left (\frac {\sqrt {c^2 d+e} x}{\sqrt {d} \sqrt {-1+c^2 x^2}}\right )}{8 \sqrt {d} e^2 \left (c^2 d+e\right )^{3/2} \sqrt {-1+c x} \sqrt {1+c x}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.67 (sec) , antiderivative size = 192, normalized size of antiderivative = 0.83 \[ \int \frac {x^3 (a+b \text {arccosh}(c x))}{\left (d+e x^2\right )^3} \, dx=\frac {\frac {\frac {b c e x \sqrt {-1+c x} \sqrt {1+c x} \left (d+e x^2\right )}{c^2 d+e}-2 a \left (d+2 e x^2\right )}{\left (d+e x^2\right )^2}-\frac {2 b \left (d+2 e x^2\right ) \text {arccosh}(c x)}{\left (d+e x^2\right )^2}-\frac {b c \left (2 c^2 d+3 e\right ) \sqrt {-1+c x} \sqrt {1+c x} \arctan \left (\frac {\sqrt {-c^2 d-e} x}{\sqrt {d} \sqrt {-1+c^2 x^2}}\right )}{\sqrt {d} \left (-c^2 d-e\right )^{3/2} \sqrt {-1+c^2 x^2}}}{8 e^2} \]

[In]

Integrate[(x^3*(a + b*ArcCosh[c*x]))/(d + e*x^2)^3,x]

[Out]

(((b*c*e*x*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(d + e*x^2))/(c^2*d + e) - 2*a*(d + 2*e*x^2))/(d + e*x^2)^2 - (2*b*(d
+ 2*e*x^2)*ArcCosh[c*x])/(d + e*x^2)^2 - (b*c*(2*c^2*d + 3*e)*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*ArcTan[(Sqrt[-(c^2*
d) - e]*x)/(Sqrt[d]*Sqrt[-1 + c^2*x^2])])/(Sqrt[d]*(-(c^2*d) - e)^(3/2)*Sqrt[-1 + c^2*x^2]))/(8*e^2)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1168\) vs. \(2(197)=394\).

Time = 0.55 (sec) , antiderivative size = 1169, normalized size of antiderivative = 5.06

method result size
parts \(\text {Expression too large to display}\) \(1169\)
derivativedivides \(\text {Expression too large to display}\) \(1199\)
default \(\text {Expression too large to display}\) \(1199\)

[In]

int(x^3*(a+b*arccosh(c*x))/(e*x^2+d)^3,x,method=_RETURNVERBOSE)

[Out]

a*(1/4*d/e^2/(e*x^2+d)^2-1/2/e^2/(e*x^2+d))+b/c^4*(1/4*c^8*arccosh(c*x)/e^2*d/(c^2*e*x^2+c^2*d)^2-1/2*c^6*arcc
osh(c*x)/e^2/(c^2*e*x^2+c^2*d)+1/16*c^6*e*(2*ln(-2*(-(-(c^2*d+e)/e)^(1/2)*(c^2*x^2-1)^(1/2)*e+(-c^2*d*e)^(1/2)
*c*x+e)/(e*c*x+(-c^2*d*e)^(1/2)))*c^6*x^2*d^2*e+2*ln(-2*(-(-(c^2*d+e)/e)^(1/2)*(c^2*x^2-1)^(1/2)*e+(-c^2*d*e)^
(1/2)*c*x+e)/(e*c*x+(-c^2*d*e)^(1/2)))*c^6*d^3-2*ln(2*((-(c^2*d+e)/e)^(1/2)*(c^2*x^2-1)^(1/2)*e+(-c^2*d*e)^(1/
2)*c*x-e)/(e*c*x-(-c^2*d*e)^(1/2)))*c^6*d^2*e*x^2-2*ln(2*((-(c^2*d+e)/e)^(1/2)*(c^2*x^2-1)^(1/2)*e+(-c^2*d*e)^
(1/2)*c*x-e)/(e*c*x-(-c^2*d*e)^(1/2)))*c^6*d^3+5*ln(-2*(-(-(c^2*d+e)/e)^(1/2)*(c^2*x^2-1)^(1/2)*e+(-c^2*d*e)^(
1/2)*c*x+e)/(e*c*x+(-c^2*d*e)^(1/2)))*c^4*x^2*d*e^2+5*ln(-2*(-(-(c^2*d+e)/e)^(1/2)*(c^2*x^2-1)^(1/2)*e+(-c^2*d
*e)^(1/2)*c*x+e)/(e*c*x+(-c^2*d*e)^(1/2)))*c^4*d^2*e-5*ln(2*((-(c^2*d+e)/e)^(1/2)*(c^2*x^2-1)^(1/2)*e+(-c^2*d*
e)^(1/2)*c*x-e)/(e*c*x-(-c^2*d*e)^(1/2)))*c^4*d*e^2*x^2-5*ln(2*((-(c^2*d+e)/e)^(1/2)*(c^2*x^2-1)^(1/2)*e+(-c^2
*d*e)^(1/2)*c*x-e)/(e*c*x-(-c^2*d*e)^(1/2)))*c^4*d^2*e+2*c^3*d*e*(-c^2*d*e)^(1/2)*(c^2*x^2-1)^(1/2)*(-(c^2*d+e
)/e)^(1/2)*x+3*ln(-2*(-(-(c^2*d+e)/e)^(1/2)*(c^2*x^2-1)^(1/2)*e+(-c^2*d*e)^(1/2)*c*x+e)/(e*c*x+(-c^2*d*e)^(1/2
)))*c^2*x^2*e^3+3*ln(-2*(-(-(c^2*d+e)/e)^(1/2)*(c^2*x^2-1)^(1/2)*e+(-c^2*d*e)^(1/2)*c*x+e)/(e*c*x+(-c^2*d*e)^(
1/2)))*c^2*d*e^2-3*ln(2*((-(c^2*d+e)/e)^(1/2)*(c^2*x^2-1)^(1/2)*e+(-c^2*d*e)^(1/2)*c*x-e)/(e*c*x-(-c^2*d*e)^(1
/2)))*e^3*c^2*x^2-3*ln(2*((-(c^2*d+e)/e)^(1/2)*(c^2*x^2-1)^(1/2)*e+(-c^2*d*e)^(1/2)*c*x-e)/(e*c*x-(-c^2*d*e)^(
1/2)))*c^2*d*e^2+2*e^2*(-c^2*d*e)^(1/2)*(c^2*x^2-1)^(1/2)*(-(c^2*d+e)/e)^(1/2)*c*x)*(c*x+1)^(1/2)*(c*x-1)^(1/2
)/(-c^2*d*e)^(1/2)/(e*c*x-(-c^2*d*e)^(1/2))/(-(c^2*d+e)/e)^(1/2)/(e*c*x+(-c^2*d*e)^(1/2))/(-(-c^2*d*e)^(1/2)+e
)^2/((-c^2*d*e)^(1/2)+e)^2/(c^2*x^2-1)^(1/2))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 577 vs. \(2 (196) = 392\).

Time = 0.36 (sec) , antiderivative size = 1217, normalized size of antiderivative = 5.27 \[ \int \frac {x^3 (a+b \text {arccosh}(c x))}{\left (d+e x^2\right )^3} \, dx=\text {Too large to display} \]

[In]

integrate(x^3*(a+b*arccosh(c*x))/(e*x^2+d)^3,x, algorithm="fricas")

[Out]

[-1/16*(2*(2*a - b)*c^4*d^4 + 2*(4*a - b)*c^2*d^3*e - 4*(b*c^4*d^2*e^2 + 2*b*c^2*d*e^3 + b*e^4)*x^4*log(c*x +
sqrt(c^2*x^2 - 1)) + 4*a*d^2*e^2 - 2*(b*c^4*d^2*e^2 + b*c^2*d*e^3)*x^4 + 4*((2*a - b)*c^4*d^3*e + (4*a - b)*c^
2*d^2*e^2 + 2*a*d*e^3)*x^2 - (2*b*c^3*d^3 + 3*b*c*d^2*e + (2*b*c^3*d*e^2 + 3*b*c*e^3)*x^4 + 2*(2*b*c^3*d^2*e +
 3*b*c*d*e^2)*x^2)*sqrt(c^2*d^2 + d*e)*log(-(2*c^2*d^2 - (4*c^4*d^2 + 4*c^2*d*e + e^2)*x^2 + d*e - 2*sqrt(c^2*
d^2 + d*e)*((2*c^3*d + c*e)*x^2 - c*d) - 2*sqrt(c^2*x^2 - 1)*(sqrt(c^2*d^2 + d*e)*(2*c^2*d + e)*x + 2*(c^3*d^2
 + c*d*e)*x))/(e*x^2 + d)) - 4*(b*c^4*d^4 + 2*b*c^2*d^3*e + b*d^2*e^2 + (b*c^4*d^2*e^2 + 2*b*c^2*d*e^3 + b*e^4
)*x^4 + 2*(b*c^4*d^3*e + 2*b*c^2*d^2*e^2 + b*d*e^3)*x^2)*log(-c*x + sqrt(c^2*x^2 - 1)) - 2*sqrt(c^2*x^2 - 1)*(
(b*c^3*d^2*e^2 + b*c*d*e^3)*x^3 + (b*c^3*d^3*e + b*c*d^2*e^2)*x))/(c^4*d^5*e^2 + 2*c^2*d^4*e^3 + d^3*e^4 + (c^
4*d^3*e^4 + 2*c^2*d^2*e^5 + d*e^6)*x^4 + 2*(c^4*d^4*e^3 + 2*c^2*d^3*e^4 + d^2*e^5)*x^2), -1/8*((2*a - b)*c^4*d
^4 + (4*a - b)*c^2*d^3*e - 2*(b*c^4*d^2*e^2 + 2*b*c^2*d*e^3 + b*e^4)*x^4*log(c*x + sqrt(c^2*x^2 - 1)) + 2*a*d^
2*e^2 - (b*c^4*d^2*e^2 + b*c^2*d*e^3)*x^4 + 2*((2*a - b)*c^4*d^3*e + (4*a - b)*c^2*d^2*e^2 + 2*a*d*e^3)*x^2 -
(2*b*c^3*d^3 + 3*b*c*d^2*e + (2*b*c^3*d*e^2 + 3*b*c*e^3)*x^4 + 2*(2*b*c^3*d^2*e + 3*b*c*d*e^2)*x^2)*sqrt(-c^2*
d^2 - d*e)*arctan((sqrt(-c^2*d^2 - d*e)*sqrt(c^2*x^2 - 1)*e*x - sqrt(-c^2*d^2 - d*e)*(c*e*x^2 + c*d))/(c^2*d^2
 + d*e)) - 2*(b*c^4*d^4 + 2*b*c^2*d^3*e + b*d^2*e^2 + (b*c^4*d^2*e^2 + 2*b*c^2*d*e^3 + b*e^4)*x^4 + 2*(b*c^4*d
^3*e + 2*b*c^2*d^2*e^2 + b*d*e^3)*x^2)*log(-c*x + sqrt(c^2*x^2 - 1)) - sqrt(c^2*x^2 - 1)*((b*c^3*d^2*e^2 + b*c
*d*e^3)*x^3 + (b*c^3*d^3*e + b*c*d^2*e^2)*x))/(c^4*d^5*e^2 + 2*c^2*d^4*e^3 + d^3*e^4 + (c^4*d^3*e^4 + 2*c^2*d^
2*e^5 + d*e^6)*x^4 + 2*(c^4*d^4*e^3 + 2*c^2*d^3*e^4 + d^2*e^5)*x^2)]

Sympy [F(-1)]

Timed out. \[ \int \frac {x^3 (a+b \text {arccosh}(c x))}{\left (d+e x^2\right )^3} \, dx=\text {Timed out} \]

[In]

integrate(x**3*(a+b*acosh(c*x))/(e*x**2+d)**3,x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {x^3 (a+b \text {arccosh}(c x))}{\left (d+e x^2\right )^3} \, dx=\int { \frac {{\left (b \operatorname {arcosh}\left (c x\right ) + a\right )} x^{3}}{{\left (e x^{2} + d\right )}^{3}} \,d x } \]

[In]

integrate(x^3*(a+b*arccosh(c*x))/(e*x^2+d)^3,x, algorithm="maxima")

[Out]

-1/8*b*((c^4*d + 2*c^2*e)*log(e*x^2 + d)/(c^4*d^2*e^2 + 2*c^2*d*e^3 + e^4) + (c^4*d^3 + c^2*d^2*e + (c^4*d^2*e
 + c^2*d*e^2)*x^2 + 2*(c^4*d^3 + 2*c^2*d^2*e + d*e^2 + 2*(c^4*d^2*e + 2*c^2*d*e^2 + e^3)*x^2)*log(c*x + sqrt(c
*x + 1)*sqrt(c*x - 1)) - (c^4*d^3 + 2*c^2*d^2*e + (c^4*d*e^2 + 2*c^2*e^3)*x^4 + 2*(c^4*d^2*e + 2*c^2*d*e^2)*x^
2)*log(c*x + 1) - (c^4*d^3 + 2*c^2*d^2*e + (c^4*d*e^2 + 2*c^2*e^3)*x^4 + 2*(c^4*d^2*e + 2*c^2*d*e^2)*x^2)*log(
c*x - 1))/(c^4*d^4*e^2 + 2*c^2*d^3*e^3 + d^2*e^4 + (c^4*d^2*e^4 + 2*c^2*d*e^5 + e^6)*x^4 + 2*(c^4*d^3*e^3 + 2*
c^2*d^2*e^4 + d*e^5)*x^2) + 8*integrate(1/4*(2*c*e*x^2 + c*d)/(c^3*e^4*x^7 - c*d^2*e^2*x + (2*c^3*d*e^3 - c*e^
4)*x^5 + (c^3*d^2*e^2 - 2*c*d*e^3)*x^3 + (c^2*e^4*x^6 + (2*c^2*d*e^3 - e^4)*x^4 - d^2*e^2 + (c^2*d^2*e^2 - 2*d
*e^3)*x^2)*e^(1/2*log(c*x + 1) + 1/2*log(c*x - 1))), x)) - 1/4*(2*e*x^2 + d)*a/(e^4*x^4 + 2*d*e^3*x^2 + d^2*e^
2)

Giac [F(-2)]

Exception generated. \[ \int \frac {x^3 (a+b \text {arccosh}(c x))}{\left (d+e x^2\right )^3} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(x^3*(a+b*arccosh(c*x))/(e*x^2+d)^3,x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

Mupad [F(-1)]

Timed out. \[ \int \frac {x^3 (a+b \text {arccosh}(c x))}{\left (d+e x^2\right )^3} \, dx=\int \frac {x^3\,\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )}{{\left (e\,x^2+d\right )}^3} \,d x \]

[In]

int((x^3*(a + b*acosh(c*x)))/(d + e*x^2)^3,x)

[Out]

int((x^3*(a + b*acosh(c*x)))/(d + e*x^2)^3, x)